
Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

1 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

R

(2)

N

(5)

Oral

(3)

Total

(2)

Dated Sign

Assignment Group- A_07

Problem Definition

Write a program using TCP socket for wired network for following

 Say Hello to Each other (For all students)

 File transfer (For all students)

 Calculator (Arithmetic) (50% students)

 Calculator (Trigonometry) (50% students)

Demonstrate the packets captured traces using Wire shark Packet Analyzer Tool for peer to

peer mode..

 1.1 Prerequisite:

 IP Address and OSI & TCP/IP Model.

 Role of different servers.

 Basic C programming.

1.2 Learning Objectives:

 Understand data exchange features of Sockets.

 Understand server client socket programming.

1.3 Theory

Introduction

Socket programming is a way of connecting two nodes on a network to communicate with

each other. One socket (node) listens on a particular port at an IP, while other socket reaches

out to the other to form a connection. Server forms the listener socket while client reaches out

to the server.

Socket Structures

Socket address structures are an integral part of every network program. We allocate them,

fill them in, and pass pointers to them to various socket functions. Sometimes we pass a

pointer to one of these structures to a socket function and it fills in the contents.

We always pass these structures by reference (i.e., we pass a pointer to the structure, not the

structure itself), and we always pass the size of the structure as another argument.

When a socket function fills in a structure, the length is also passed by reference, so that its

value can be updated by the function. We call these value-result arguments.

Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

2 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

Always, set the structure variables to NULL (i.e., '\0') by using memset() for bzero()

functions, otherwise it may get unexpected junk values in your structure.

Where is Socket Used?

A Unix Socket is used in a client-server application framework. A server is a process that

performs some functions on request from a client. Most of the application-level protocols like

FTP, SMTP, and POP3 make use of sockets to establish connection between client and server

and then for exchanging data.

2.1 Socket Types.

There are four types of sockets available to the users. The first two are most commonly used

and the last two are rarely used.

Processes are presumed to communicate only between sockets of the same type but there is

no restriction that prevents communication between sockets of different types.

 Stream Sockets − Delivery in a networked environment is guaranteed. If you send

through the stream socket three items "A, B, C", they will arrive in the same order −

"A, B, C". These sockets use TCP (Transmission Control Protocol) for data

transmission. If delivery is impossible, the sender receives an error indicator. Data

records do not have any boundaries. For declaring TCP socket SOCK_STREAM is

used.

 Datagram Sockets − Delivery in a networked environment is not guaranteed. They're

connectionless because you don't need to have an open connection as in Stream

Sockets − you build a packet with the destination information and send it out. They

use UDP (User Datagram Protocol). SOCK_DGRAM Supports datagram

(connectionless, unreliable messages of a fixed maximum length).

 Raw Sockets − These provide users access to the underlying communication

protocols, which support socket abstractions. These sockets are normally datagram

oriented, though their exact characteristics are dependent on the interface provided by

the protocol. Raw sockets are not intended for the general user; they have been

provided mainly for those interested in developing new communication protocols, or

for gaining access to some of the more cryptic facilities of an existing protocol.

SOCK_RAW Provides raw network protocol access.

 Sequenced Packet Sockets −. SOCK_SEQPACKET Provides a sequenced, reliable,

two-way connection based data transmission path for datagram of fixed maximum

length; a consumer is required to read an entire packet with each input system call.

2.2 Addressing, Protocol Families and Socket Types

A socket is one endpoint of a communication channel used by programs to pass data back and

forth locally or across the Internet. Sockets have two primary properties controlling the way

they send data: the address family controls the OSI network layer protocol used and the

socket type controls the transport layer protocol.

C supports three address families.

 AF_INET is used for IPv4 Internet addressing. IPv4 addresses are made up of four

octal values separated by dots (e.g., 10.1.1.5 and 127.0.0.1). These values are more

commonly referred to as “IP addresses.” Almost all Internet networking is done using

IP version 4 at this time.

Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

3 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

 AF_INET6 is used for IPv6 Internet addressing. IPv6 is the “next generation” version

of the Internet protocol, and supports 128-bit addresses, traffic shaping, and routing

features not available under IPv4. Adoption of IPv6 is still limited, but continues to

grow.

 AF_UNIX is the address family for Unix Domain Sockets (UDS), an inter-process

communication protocol available on POSIX-compliant systems.

2.3 Protocol − The argument should be set to the specific protocol type given below, or 0 to

select the system's default for the given combination of family and type −

Protocol Description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport protocol

3.1 Network Byte Orders

Unfortunately, not all computers store the bytes that comprise a multisystem value in the

same order. Consider a 16-bit internet that is made up of 2 bytes. There are two ways to store

this value.

 Little Endian − In this scheme, low-order byte is stored on the starting address (A)

and high-order byte is stored on the next address (A + 1).

 Big Endian − In this scheme, high-order byte is stored on the starting address (A) and

low-order byte is stored on the next address (A + 1).

To allow machines with different byte order conventions communicate with each other, the

Internet protocols specify a canonical byte order convention for data transmitted over the

network. This is known as Network Byte Order.

While establishing an Internet socket connection, you must make sure that the data in the

sin_port and sin_addr members of the sockaddr_in structure are represented in Network Byte

Order

3.2 Byte Ordering Functions

Routines for converting data between a host's internal representation and Network Byte Order

are as follows −

Function Description

htons()
Host to Network Short

htonl()
Host to Network Long

ntohl()
Network to Host Long

ntohs()
Network to Host Short

Listed below are some more detail about these functions −

 unsigned short htons(unsigned short hostshort) − This function converts 16-bit (2-

byte) quantities from host byte order to network byte order.

Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

4 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

 unsigned long htonl(unsigned long hostlong) − This function converts 32-bit (4-

byte) quantities from host byte order to network byte order.

 unsigned short ntohs(unsigned short netshort) − This function converts 16-bit (2-

byte) quantities from network byte order to host byte order.

 unsigned long ntohl(unsigned long netlong) − This function converts 32-bit

quantities from network byte order to host byte order.

3.3 IP Address Functions

UNIX provides various function calls to help you manipulate IP addresses. These functions

convert Internet addresses between ASCII strings (what humans prefer to use) and network

byte ordered binary values (values that are stored in socket address structures).

The following three function calls are used for IPv4 addressing –

 int inet_aton(const char *strptr, struct in_addr *addrptr)

 in_addr_t inet_addr(const char *strptr)

 char *inet_ntoa(struct in_addr inaddr)

4.1 Socket - Core Functions

4.2 The socket Function

To perform network I/O, the first thing a process must do is, call the socket function,

specifying the type of communication protocol desired and protocol family, etc.

int socket (int family, int type, int protocol);

This call returns a socket descriptor that you can use in later system calls or -1 on error.

Parameters

Family − It specifies the protocol family and is one of the constants shown below –

Family Description

AF_INET IPv4 protocols

AF_INET6 IPv6 protocols

AF_LOCAL
Unix domain

protocols

AF_ROUTE Routing Sockets

AF_KEY Ket socket

Type− It specifies the kind of socket you want. It can take one of the following values –

Type Description

SOCK_STREAM Stream socket

SOCK_DGRAM Datagram socket

SOCK_SEQPACKET Sequenced packet socket

SOCK_RAW Raw socket

Protocol − The argument should be set to the specific protocol type given below, or 0 to

select the system's default for the given combination of family and type –

Protocol Description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport protocol

Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

5 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

4.1.1 .The connect Function

The connect function is used by a TCP client to establish a connection with a TCP server. If

the socket has not already been bound to a local address, connect() shall bind it to an address

which, unless the socket's address family is AF_UNIX, is an unused local address.

This call returns 0 if it successfully connects to the server, otherwise it returns -1 on error.

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

Parameters

1. sockfd − It is a socket descriptor returned by the socket function.

2. serv_addr − It is a pointer to struct sockaddr that contains destination IP address and

port.

3. addrlen − Set it to sizeof(struct sockaddr).

4.1.2. The bind Function

The bind function assigns a local protocol address to a socket. With the Internet protocols, the

protocol address is the combination of either a 32-bit IPv4 address or a 128-bit IPv6 address,

along with a 16-bit TCP or UDP port number. This function is called by TCP server only.

int bind(int sockfd, struct sockaddr *my_addr,int addrlen);

This call returns 0 if it successfully binds to the address, otherwise it returns -1 on error.

Parameters

 sockfd − It is a socket descriptor returned by the socket function.

 my_addr − It is a pointer to struct sockaddr that contains the local IP address and

port.

 addrlen − Set it to sizeof(struct sockaddr).

You can put your IP address and your port automatically

A 0 value for port number means that the system will choose a random port, and

INADDR_ANY value for IP address means the server's IP address will be assigned

automatically.

server.sin_port = 0;

server.sin_addr.s_addr = INADDR_ANY;

All ports below 1024 are reserved. You can set a port above 1024 and below 65535 unless

they are the ones being used by other programs.

4.1.3 The listen Function

The listen function is called only by a TCP server and it performs two actions −

The listen function converts an unconnected socket into a passive socket, indicating that the

kernel should accept incoming connection requests directed to this socket.

The second argument to this function specifies the maximum number of connections the

kernel should queue for this socket.

Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

6 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

int listen(int sockfd,int backlog);

This call returns 0 on success, otherwise it returns -1 on error.

Parameters

 sockfd − It is a socket descriptor returned by the socket function.

 backlog − It is the number of allowed connections.

4.1.4 The accept Function

The accept function is called by a TCP server to return the next completed connection from

the front of the completed connection queue. The signature of the call is as follows −

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

This call returns a non-negative descriptor on success, otherwise it returns -1 on error. The

returned descriptor is assumed to be a client socket descriptor and all read-write operations

will be done on this descriptor to communicate with the client.

Parameters

 sockfd − It is a socket descriptor returned by the socket function.

 cliaddr − It is a pointer to struct sockaddr that contains client IP address and port.

 addrlen − Set it to sizeof(struct sockaddr).

4.1.5 The send Function

The send function is used to send data over stream sockets or CONNECTED datagram

sockets. If you want to send data over UNCONNECTED datagram sockets, you must use

sendto() function.

You can use write() system call to send data. Its signature is as follows −

int send(int sockfd, const void *msg, int len, int flags);

This call returns the number of bytes sent out, otherwise it will return -1 on error.

Parameters

 sockfd − It is a socket descriptor returned by the socket function.

 msg − It is a pointer to the data you want to send.

 len − It is the length of the data you want to send (in bytes).

 flags − It is set to 0.

4.1.6 The recv Function

The recv function is used to receive data over stream sockets or CONNECTED datagram

sockets. If you want to receive data over UNCONNECTED datagram sockets you must use

recvfrom().

You can use read() system call to read the data. This call is explained in helper functions

chapter.

int recv(int sockfd, void *buf, int len, unsigned int flags);

This call returns the number of bytes read into the buffer, otherwise it will return -1 on error.

Parameters

Computer Network laboratory (2015) Pattern TE Computer 1 TE Computer

7 SNJB’s Late Sau. K. B. Jain College of Engineering, Chandwad

 sockfd − It is a socket descriptor returned by the socket function.

 buf − It is the buffer to read the information into.

 len − It is the maximum length of the buffer.

 flags − It is set to 0.

Assignment Question:

1. What is Socket and where it is used?

2. What is the deference between TCP and UDP SOCKET?

3. Why bit ordering is used?

Conclusion:

Hence we conclude that we have to create socket for transferring any data between the source and

destination using socket programming we transfer TCP and UDP data. We also observed this

communication using net stat command or wire shark packet analyser

